The SARS-CoV-2 virus, responsible for the COVID-19 pandemic, encodes various proteins, with one of them being an ion channel called E. This ion channel, known to transport protons and calcium ions, triggers an inflammatory response within infected cells, leading to tissue damage and the manifestation of COVID-19 symptoms. In an effort to understand the mechanism
Chemistry
For chemists, developing new synthesis methods to obtain novel products is essential to meet society’s ever-growing needs. This involves creating complex organic chemical compounds from simpler reagents through a series of precise reactions. However, achieving better control and simpler operation of these reactions remains a significant research challenge. In a groundbreaking study, a research group
Fine chemical and pharmaceutical manufacturing processes have long been criticized for their significant negative environmental impacts. In fact, recent studies have shown that the carbon footprint of the pharmaceutical industry surpasses that of the automotive industry, making it a major contributor to air pollution. Furthermore, these industries are responsible for water pollution caused by the
Wastewater treatment is a critical process that aims to remove harmful pollutants and chemicals from water sources, ensuring clean and safe water for consumption and environmental protection. However, the removal of dyes, such as those discharged by textile, cosmetic, ink, and paper manufacturers, has posed a significant challenge for traditional treatment methods. These dyes, known
Fluorinated gases, known for their hazardous nature and ozone-depleting effects, have long posed a challenge in terms of safe handling and storage. However, a recent study conducted by chemists from Cornell University, the Korea Institute of Science and Technology, and Southern Methodist University has discovered a groundbreaking solution. By utilizing metal organic frameworks (MOFs), the
In the battle against cancer, scientists face the daunting task of identifying effective drug targets amidst the vast complexity of tumor cells. These cells rely on thousands of proteins to function, but only a fraction of them can be specifically targeted by drugs to treat cancer safely and efficiently. However, a groundbreaking study led by
In the pursuit of sustainable materials development and reducing our carbon footprint, the recycling of plastic waste plays a crucial role. Dissolving polymers with organic solvents is an essential process in various applications such as polymer synthesis, refining, painting, and coating. However, determining the miscibility of polymers with solvent candidates has always been a challenge
The presence of perfluorooctanoic acid (PFOA) in the human body has raised concerns due to its potential health risks. A team of scientists from the A*STAR’s Singapore Institute of Food and Biotechnology Innovation (SIFBI) and the A*STAR Skin Research Labs (A*SRL) has made a significant breakthrough in understanding the processing of PFOA in the human
The field of material science constantly seeks new ways to design structures with precise control and tailor-made properties. In the realm of metal-organic frameworks (MOFs), a groundbreaking technique has been developed inspired by the ancient art of constructing arched stone windows. This innovative method employs a molecular version of an architectural arch-forming template to shape
In a groundbreaking study, researchers from Stanford University have achieved a scientific feat previously thought to be impossible. For the first time ever, they have successfully created and stabilized a highly elusive form of gold known as Au2+ using a halide perovskite. What makes this discovery all the more remarkable is the simplicity and speed
Solid materials have traditionally been viewed as rigid and immobile. However, scientists are challenging this notion by exploring ways to incorporate moving parts into solids. This groundbreaking approach opens up opportunities for the development of exotic new materials, including amphidynamic crystals, which contain both rigid and mobile components. By controlling molecular rotation within the material,
Organic synthesis, the process of creating molecules used in various industries, is like playing with microscopic LEGO bricks. Chemists connect simple building blocks to form complex molecules, just as LEGO bricks are snapped together to construct intricate structures. A crucial step in this process involves creating a bond between two carbon atoms. However, connecting these
One of the fundamental processes in molecular biology is glycosylation, which involves the attachment of carbohydrates to protein molecules. This enzymatic reaction is crucial in determining the structure, function, and stability of proteins. Proteins that undergo glycosylation are referred to as glycoproteins. The two main types of protein glycosylation are N-glycosylation and O-glycosylation. A New
In a groundbreaking development, researchers have successfully converted a waste material from wood into a transparent film that can be used to create anti-fogging and anti-reflective coatings for glasses or vehicle windows. This innovative approach not only offers a safer alternative to the toxic synthetic materials currently in use but also transforms a waste product
As technologies for capturing carbon dioxide from the atmosphere continue to improve, finding viable solutions for the utilization of captured carbon becomes a crucial challenge. However, a recent study conducted by Rice University’s lab of materials scientist Pulickel Ajayan has made significant progress in this area. The researchers developed a method that effectively converts carbon