Physics

The field of quantum physics has recently witnessed a groundbreaking development through the introduction of frequency-domain photon number-path entanglement. Unlike the traditional spatial-domain entanglement, this innovative approach involves manipulating the frequency of individual photons using a cutting-edge tool known as a frequency beam splitter. This tool has demonstrated an impressive success rate of 50%, paving
0 Comments
In a groundbreaking study published in the Proceedings of the National Academy of Sciences, theoretical physicists at Utrecht University and experimental physicists at Sogang University in South Korea have successfully constructed an artificial synapse that operates with water and salt. This innovative approach to neuromorphic computing aims to replicate the intricate workings of the human
0 Comments
Photonic quantum computers represent a cutting-edge technology in the realm of quantum computing, utilizing particles of light, also known as photons, as the building blocks for information processing. These computers offer the potential for surpassing traditional quantum computers in terms of speed and the transmission of information over longer distances. Despite their promising advantages, photonic
0 Comments
Solar energy has captured the attention of researchers and engineers around the world as a promising source of renewable energy. Traditional solar panels have been effective in capturing sunlight and converting it into electricity, but they come with limitations in terms of flexibility and aesthetics. The emergence of transparent solar cells has opened up new
0 Comments
Spintronics is an emerging field that has caught the attention of scientists and researchers due to its numerous potential advantages over conventional electronics. These advantages include reducing power consumption, enabling high-speed operation, providing non-volatility, and offering the potential for new functionalities. At the core of spintronics is the exploitation of the intrinsic spin of electrons,
0 Comments
Single-photon emitters (SPEs) are revolutionizing the field of quantum technology by acting as microscopic lightbulbs that emit only one photon at a time. These tiny structures are crucial for applications such as secure communications and high-resolution imaging. However, the high cost and complexity of integrating materials containing SPEs into mass-manufactured devices have hindered their widespread
0 Comments
Quantum physics has paved the way for high-precision sensing techniques that allow scientists to delve deeper into the microscopic properties of materials. Among the emerging analog quantum processors, quantum-gas microscopes have emerged as powerful tools for understanding quantum systems at the atomic level. These devices have the capability to produce images of quantum gases with
0 Comments
The concept of “coupled oscillations” may not be a household term for many, but its significance in the realm of science and engineering cannot be overstated. From mechanical systems to gravitational interactions, coupled harmonic oscillators are ubiquitous in nature. Recently, a groundbreaking quantum algorithm developed by researchers from Pacific Northwest National Laboratory, Google Quantum AI,
0 Comments
In a groundbreaking development at the University of Tokyo, a team of researchers have successfully enhanced the capabilities of mid-infrared microscopy, allowing for unprecedented insights into the structures within living bacteria at the nanometer scale. Published in Nature Photonics, this advancement marks a significant improvement in resolution, with images now produced at a remarkable 120
0 Comments
Scientists at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) are making significant strides in their pursuit of harnessing plasma to generate electricity through fusion. One of the latest breakthroughs from PPPL researchers involves the innovative combination of two established methods – electron cyclotron current drive (ECCD) and applying resonant magnetic perturbations (RMP).
0 Comments
In a recent development at the University of Würzburg, researchers have made significant progress in the field of quantum resistance standards. This advancement relies on a quantum phenomenon known as the Quantum Anomalous Hall effect. The accurate measurement of electrical resistance is crucial in various industries such as industrial production and electronics. The ability to
0 Comments