Chemistry

Solid materials have traditionally been viewed as rigid and immobile. However, scientists are challenging this notion by exploring ways to incorporate moving parts into solids. This groundbreaking approach opens up opportunities for the development of exotic new materials, including amphidynamic crystals, which contain both rigid and mobile components. By controlling molecular rotation within the material,
0 Comments
Organic synthesis, the process of creating molecules used in various industries, is like playing with microscopic LEGO bricks. Chemists connect simple building blocks to form complex molecules, just as LEGO bricks are snapped together to construct intricate structures. A crucial step in this process involves creating a bond between two carbon atoms. However, connecting these
0 Comments
One of the fundamental processes in molecular biology is glycosylation, which involves the attachment of carbohydrates to protein molecules. This enzymatic reaction is crucial in determining the structure, function, and stability of proteins. Proteins that undergo glycosylation are referred to as glycoproteins. The two main types of protein glycosylation are N-glycosylation and O-glycosylation. A New
0 Comments
In a groundbreaking development, researchers have successfully converted a waste material from wood into a transparent film that can be used to create anti-fogging and anti-reflective coatings for glasses or vehicle windows. This innovative approach not only offers a safer alternative to the toxic synthetic materials currently in use but also transforms a waste product
0 Comments
As technologies for capturing carbon dioxide from the atmosphere continue to improve, finding viable solutions for the utilization of captured carbon becomes a crucial challenge. However, a recent study conducted by Rice University’s lab of materials scientist Pulickel Ajayan has made significant progress in this area. The researchers developed a method that effectively converts carbon
0 Comments
Glyphosate, one of the most commonly used herbicides worldwide, poses significant environmental and health concerns. To address this issue, researchers at São Paulo State University (UNESP) in Brazil have developed a novel technique for removing glyphosate from water using sugarcane bagasse. This waste material from the sugar and ethanol industry offers a sustainable solution to
0 Comments
A groundbreaking study, published in the prestigious journal Chemical Science, has shed light on the remarkable properties of zirconium nitride (ZrN). This newly identified material holds the key to powering clean energy reactions, potentially revolutionizing the way we generate electricity. Researchers, led by Associate Professor Hao Li from Tohoku University’s Advanced Institute for Materials Research
0 Comments
Copper amine oxidases, a class of enzymes, play a vital role in the healing process of wounds and detoxification of harmful substances in the human body. Understanding the atomic structure of these enzymes is crucial for enhancing their functionality. However, conventional imaging techniques struggle to accurately depict the positions of hydrogen atoms within these enzymes.
0 Comments
As the world of technology continues to advance at a rapid pace, innovative electronic devices such as foldable displays, wearables, e-skin, and medical devices have emerged. These devices rely heavily on flexible electronic technology, which in turn has created a growing demand for flexible adhesives that can effectively connect various components while maintaining their shape.
0 Comments
Spent coffee grounds (SCG) pose a significant environmental challenge, with almost 6 million metric tons of waste generated globally each year. Recognizing the need for sustainable waste management, researchers are exploring innovative ways to repurpose SCG into value-added products. Led by Associate Professor Liu Shao Quan from the NUS Department of Food Science and Technology,
0 Comments
Researchers from the University of Edinburgh and the University of Cantabria have collaborated to develop an artificial intelligence (AI) model capable of identifying senolytic medicinal chemistry in familiar compounds. The scientists have published a paper titled “Discovery of senolytics using machine learning” in Nature Communications, detailing their efforts to search through over 4,300 scientifically described
0 Comments
Scientists from the University of Tokyo led a team of researchers who have created a new method of imaging and analyzing biological samples. The new imaging method, called RESORT, combines the benefits of two leading technologies: super-resolution fluorescence imaging and vibrational imaging. While super-resolution fluorescence imaging provides good spatial resolution, vibrational imaging compromises spatial resolution
0 Comments
Researchers at the University of Wisconsin-Madison have discovered a new way to speed up the process of discovering new high-performance polymers. By using machine learning and molecular dynamics simulations, they have discovered several promising polyimides out of a field of 8 million candidates. Polyimides are commonly used in the aerospace, automobile and electronics industries for
0 Comments