A black hole discovered lurking in the Cosmic Dawn is just way too big to easily explain. Sitting at the center of a galaxy called J1120+0641, it tips the scales at well over a billion Suns’ worth of mass. Bigger black holes exist all around us today. The problem is the when of J1120+0641’s existence. At less than 770 million years after the Big Bang, it’s hard to figure out how the black hole had the time to gain that much mass. We’ve known about the galaxy and its overstuffed black hole for more than a decade, and scientists had ideas about how it came to be. Now, observations using the JWST have nixed one of those notions.

Quasar galaxies are galaxies that have a central supermassive black hole feeding at a tremendous rate. They’re surrounded by a vast cloud of gas and dust, which they slurp down as fast as they can. The friction and gravity around the black hole heat the material, causing it to shine brightly. But the speed at which a black hole can feed is not limitless. The maximum stable rate is determined by its Eddington limit, beyond which the heated material shines so brightly that radiation pressure would exceed gravitational pull, pushing the material away and leaving nothing for the black hole to feed upon.

JWST observed the galaxy in early 2023, and a team led by astronomer Sarah Bosman of the Max Planck Institute for Astronomy in Germany analyzed the light collected to catalog the properties of the material around the black hole. The analysis reveals that the black hole is actually feeding pretty normally—there’s nothing about its accretion that appears significantly different from other more recent quasar galaxies.

One possible explanation for these giant black holes is that extra dust was leading astronomers to overestimate their masses. And yet there’s no sign of additional dust, either. That means that J1120+0641 is what it appears to be: a pretty normal quasar galaxy, with a black hole that is not guzzling down material at a super-high rate. The black hole, and the way it feeds, were already relatively mature by the time we observed it, within a few hundred million years of the Big Bang.

Overall, the new observations only add to the mystery: Early quasars were shockingly normal. No matter in which wavelengths we observe them, quasars are nearly identical at all epochs of the Universe. This means that super-Eddington accretion isn’t the solution to the growth of puzzlingly massive black holes at the dawn of time. The other leading explanation is that the black holes formed from pretty large ‘seeds’ to start with.

Rather than a slow, gradual process from something the size of a star, this theory proposes that the black holes formed from the collapse of clumps of matter or even extremely huge stars up to hundreds of thousands of times the mass of the Sun, giving their growth a head start. As we find more and more of these behemoths lurking in the fog at the beginning of the Universe, this notion seems less bizarre and more like the best possible explanation we have for this mysterious epoch in our Universe’s history.


Articles You May Like

The Future of Antigen Processing: A Breakthrough in Immunology
Revolutionizing Electrode Fabrication in South Korea
The Future of Typhoon Prediction: Using Deep Learning and Satellite Data
The Potential of Self-Organizing Chemical Reaction Networks in Computational Tasks

Leave a Reply

Your email address will not be published. Required fields are marked *