A recent study by the University of Illinois Urbana-Champaign has discovered that the stable regions of the Earth’s continental plates, commonly known as stable cratons, have undergone repetitive deformation beneath their crust since their formation in the distant past. This hypothesis contradicts decades of traditional plate tectonics theory and aims to explain why most cratons have remained structurally stable while their underbellies have experienced significant change.

The study, led by Lijun Liu, a geology professor at the University of Illinois Urbana-Champaign, used previously collected density data from the Earth’s uppermost rigid layers of crust and mantle to investigate the relationship between craton surface topography and the thickness of their underlying lithosphere layer.

The results of the study were published in the journal Nature Geosciences.

The Cratons

Cratons are the longest-lived tectonic units on Earth, surviving supercontinent cycles such as the formation and breakup of the supercontinent Pangea, as well as the lesser-known and more ancient supercontinent Rodina. It is generally accepted that cratons are protected by their thick underlying mantle roots or keels, which are believed to be buoyant and strong, and thus stable over time.

The Research

Several recent papers from Liu’s research group directly challenge this wisdom by showing that these mantle keels are actually quite dense. In a 2022 study, the team demonstrated that the traditional view of buoyant craton keels implies that most of the Earth’s cratons would be sitting about 3 kilometers above the sea surface, while in reality, their elevation is only a few hundred meters. This requires the lithospheric mantle below the crust to be of high enough density to pull the surface down by about 2 kilometers.

In another study, the team used gravity field measurements to pinpoint the density structure of the craton keels, finding that the lower portion of the mantle keel is most likely where the high-density material resides, implying a depth-increasing density profile below the cratons.

The Deformation Process

The new paper shows that the lower portion of the mantle keel that has high density tends to repeatedly peel away from the lithosphere above when mantle upwellings, called plumes, initiate supercontinent breakup. The peeled-off, or delaminated, keels could return to the base of the lithosphere after they warm up inside the hot mantle.

The whole process is similar to what happens in a lava lamp, where the cool material near the surface sinks, and the warm material near the bottom rises. This deformation history is expressed in some of the more puzzling geophysical properties observed in the lithosphere.

For example, the repetitive vertical deformation of the lower half of the mantle keel allows the seismic waves that vibrate the rock vertically to travel faster, compared to the upper half of the keel, which experienced less vertical deformation. The team also determined that mantle delamination will cause the craton surface to rise, leading to erosion.

The Conclusion

This is reflected in the strong dependence of crustal thickness on lithospheric thickness, an observation never made before this study. In particular, there are two major uplift and erosion events in the past when supercontinents Rodinia and Pangea each separated, the former causing what is known as the Great Unconformity, a feature in the Earth’s rock record that shows no evidence of new deposition, only deep craton erosion. This is the reason why we see pieces of ancient lower crust exposed at the craton’s surface today.

With the help of numerical simulations, the team said that this episodic deformation style of the lower craton keels is how the craton crusts survived the long geological history. The team believes that this newly hypothesized lifestyle of cratons will significantly change people’s view on how continents evolve and how plate tectonics operate on Earth.

Earth

Articles You May Like

The Mystery of Ariel: A Moon of Uranus
The Trace Anomaly in Quantum Chromodynamics
The Potential Diamond Fortune of Mercury: A New Perspective
The Intriguing Complexity of Ice Formation

Leave a Reply

Your email address will not be published. Required fields are marked *