From the moment Antonie van Leeuwenhoek uncovered the microscopic world of bacteria in the seventeenth century, scientists have been tirelessly striving to delve deeper into the realm of the infinitesimally small. The diffraction limit, a physical constraint that arises from the wave nature of light, sets a boundary on how closely we can scrutinize an
Physics
We find ourselves in an era of immense data, where information flows incessantly. With the exponential growth in data, the energy consumption of data centers has become a major concern, contributing significantly to environmental pollution. Researchers worldwide have delved into the development of polygonal computing systems that consume less power and offer higher computational speed.
In a groundbreaking discovery, a group of researchers has unlocked the ability to manipulate light as if it were subject to the forces of gravity. Published in the prestigious journal Physical Review A on September 28, 2023, this study holds immense promise for advancements in optics, materials science, and the future development of 6G communications.
Superconductivity, the ability of materials to conduct electrical current with virtually no resistance, has long been a subject of fascination and research for scientists. Discovering ways to enhance superconductivity could greatly benefit various technological applications, such as electronic devices and energy systems. K3C60, an organic superconductor, has shown potential for light-induced superconductivity. In a recent
The ongoing COVID-19 pandemic highlighted the urgent need for comprehensive research on respiratory droplets and their role in disease transmission. A team of scientists from the Max Planck Institute for Chemistry, in collaboration with experts from various other institutions, has taken up the task of collating publicly available information on droplet properties. Their efforts aim
Researchers at the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg, Germany, have been conducting in-depth investigations into the use of tailored laser drives to manipulate quantum materials. They have particularly focused on unconventional superconductors and their response to non-equilibrium states. Until recently, the complexity of the experiments has limited
Researchers at Huazhong University of Science and Technology in China have made a significant advancement in the field of optical chip technology. They have developed an easy-to-use optical chip that can self-configure to achieve various functions. This breakthrough has the potential to enhance optical neural networks, which are used in a wide range of data-heavy
The Large Hadron Collider (LHC) is the perfect environment for the search of new particles. Scientists believe that the theory of supersymmetry holds the key to the existence of partner particles for each known fundamental particle. These supersymmetric particles could potentially provide answers to various unresolved questions in science, including the origin of dark matter,
The size of the proton, a subatomic particle that constitutes the nucleus of an atom, has been a subject of scientific inquiry for many years. Despite extensive research efforts, scientists have struggled to determine its exact radius. In 2010, a new measurement technique involving laser spectroscopy of muonic hydrogen yielded a significantly smaller proton radius
In the realm of condensed matter physics, the convergence of two lattices with distinct angles or periodicities gives birth to a fascinating phenomenon known as a moiré superlattice. Within this superlattice, a hidden player emerges – the moiré flatband. These flatbands have the ability to shape advanced light-matter interactions, ranging from laser emission to second
Fractionalization, the phenomena of a collective state of electrons carrying a charge that is a fraction of the electron charge, has long been a dream for condensed matter physicists. The realization of such states without the need for a magnetic field would not only be a triumph of strong interaction among electrons but also hold
The field of quantum condensed-matter physics has been taken by storm with the recent discovery of the superconducting diode effect. This groundbreaking phenomenon allows for dissipationless supercurrent to flow in only one direction, opening up new possibilities for superconducting circuits. In this article, we will delve into the world of superconductors and explore the potential
X-ray technology has revolutionized the field of medicine and scientific research, providing non-invasive imaging and valuable insights into various materials. Recent advancements in X-ray technology have led to the development of brighter and more intense beams, allowing for the imaging of intricate systems in real-world conditions. This includes the ability to study the internal workings
Quasicrystals, a mysterious class of materials, have long puzzled scientists with their unconventional properties. However, researchers at MIT have recently made groundbreaking discoveries that could unravel the secrets of these enigmatic substances. By leveraging the principles of twistronics, a field pioneered at MIT, the scientists have successfully created atomically thin versions of quasicrystals that exhibit
Dynamic systems, characterized by their nonlinear nature, possess an inherent unpredictability that makes them notoriously challenging to model. From the climate and human brain to the electric grid, these complex systems undergo dramatic changes over time, often triggering significant effects elsewhere. As researchers grapple with the need to comprehend and predict these intricate behaviors, machine