The supermassive black hole observed in this study was found to be spinning at less than 25 percent of the speed of light, which is relatively slow for a black hole. While this number may not seem particularly groundbreaking on its own, the ability to measure the spin speed of black holes opens up a world of possibilities for astronomers. By studying multiple systems using this method, scientists can estimate the overall distribution of black hole spins and gain insights into how these spins evolve over time.
Supermassive black holes play a crucial role in the evolution of galaxies, acting as gravitational hubs that bind them together. These massive objects range in behavior from quiescent to highly active, emitting some of the brightest light flares in the universe. The light emitted by black holes does not come from the black holes themselves, but rather from the material swirling around them as they feed. This material forms a disk that surrounds the black hole, providing valuable insights into their behavior.
In 2020, astronomers observed a tidal disruption event in a galaxy a billion light-years away, where a previously quiescent black hole produced a massive flare of light known as AT2020ocn. By studying this event in detail, researchers were able to observe the wobble of the accretion disk around the black hole, which provided key information about its spin speed. By combining this data with the estimated mass of the black hole, scientists calculated the speed at which it was rotating.
The technique used to measure the spin speed of the black hole in this study has opened up new avenues for research in astrophysics. Tidal disruption events occur frequently enough that by monitoring them with advanced instruments like the Rubin Observatory, scientists may be able to compile a distribution map of different black hole spins. This could offer valuable insights into the behavior and evolution of black holes over time, shedding light on the history of these cosmic phenomena.
The recent discovery of the spin speed of a supermassive black hole based on the wobble of its accretion disk represents a significant breakthrough in the field of astrophysics. Moving forward, continued research using this method could provide a deeper understanding of black holes and their role in the universe, offering unprecedented insights into these elusive cosmic entities.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.
Leave a Reply