A team of researchers from the University of Science and Technology of China (USTC) led by Prof. Zhang Guoqing, Prof. Liu Shiyong, Prof. Zhou Xiaoguo, and Researcher Zhang Xuepeng, have developed an innovative method for detecting microstructures in water ice using organic phosphorescent probes and phosphorescence spectroscopy. This method is a departure from traditional absorption-based spectroscopic techniques, offering a new way to study organic molecules in ice more effectively.
The team’s approach involves using a phosphorescent probe called acridinium iodide (ADI) to indicate changes in the microstructural composition of water ice. By observing the hydration state of the ADI probe, researchers were able to differentiate between crystalline and glassy forms of water ice. In amorphous ice, the ADI probe exhibits long-lasting phosphorescence with a greenish-yellow afterglow, while in crystalline ice, the probe induces short-lived red phosphorescence due to molecular aggregation.
Through emission spectra analysis, the researchers were able to observe distinct changes in the behavior of ADI molecules when small amounts of ethylene glycol (EG) were added to the water ice. The addition of EG led to a transformation in the state of ADI molecules from undissolved aggregates to dissolved ion states, as evidenced by shifts in fluorescence and phosphorescence bands in the spectra.
To validate their findings, the researchers utilized low-temperature scanning electron microscopy (Cryo-SEM) images and low-temperature Raman (LT-Raman) spectra. These additional analyses confirmed the impact of trace amounts of EG on the microstructures of water ice, corroborating the conclusions drawn from phosphorescence spectroscopy. The images showed local areas with porous microstructures when EG was added, while the Raman spectra displayed shifts in the O-H vibration of water ice, indicating changes from a crystalline to a glassy state.
This study has provided valuable insights into the interaction between water, ice, and organic molecules. By demonstrating the inhibitory effect of organic molecules on the crystalline order of water ice, the researchers have opened up new possibilities for studying these interactions at lower concentrations and across a wider temperature range. The use of phosphorescence spectroscopy offers a more convenient and sensitive method for investigating water-ice-organics interactions, providing a new avenue for scientific exploration in this area.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.
Leave a Reply