In the realm of electronic components, two-terminal devices have long been the standard. However, these components have often posed limitations that hinder the overall performance and function of systems. Nonetheless, a groundbreaking development has emerged from the University of Science and Technology of China (USTC)’s iGAN Laboratory, spearheaded by Prof. Haiding Sun and his team
0 Comments
Solid-state hydrogen storage has long been considered a key technology in the transition towards sustainable energy solutions. The use of hydrogen as a clean energy source has the potential to revolutionize the way we power our world, especially when sourced from renewable sources. Magnesium hydride (MgH2) has emerged as a promising material due to its
0 Comments
Majoranas, named after an Italian theoretical physicist, are complex quasiparticles that hold the promise of revolutionizing the field of quantum computing. Unlike traditional electrons, Majoranas possess unique characteristics that make them ideal for applications in advanced computing systems. These particles can exist in specific types of superconductors and in a quantum state of matter known
0 Comments
The tech industry in the Bay Area has been through a turbulent period marked by waves of layoffs and restructuring as companies sought to streamline operations and improve efficiency. However, there are now signs that the industry is stabilizing after years of upheaval. While major players like Tesla continue to experience job losses, the overall
0 Comments
Chronic pain is a debilitating condition that affects a significant portion of the population, with one in five adults in the US experiencing persistent pain for extended periods of time. While current treatment options often rely on painkillers, which come with the risks of addiction and limited efficacy, researchers are delving deeper into the underlying
0 Comments
Building design methods have traditionally focused on improving the connectivity between structural components to ensure that loads are redistributed in the event of component failure. However, while these methods are effective in addressing small initial failures, they can increase the risk of progressive collapse after large initial failures, potentially leading to complete or large-scale collapses.
0 Comments
As the world grapples with the urgent need to reduce greenhouse gas emissions, particularly methane due to its alarming global warming potential, the development of a new automated methane detection method marks a significant breakthrough. A collaborative effort between researchers from Kyoto University and Geolabe, U.S. has resulted in a cutting-edge approach to detecting methane
0 Comments