A significant breakthrough in near-eye displays came with the integration of light field technology. However, earlier iterations of light field displays in virtual reality were limited by their small size and low resolution, which resulted in constrained viewing angles and screen window effects. Fortunately, the authors of a recent paper published in the Journal of Optical Microsystems have successfully overcome these limitations by utilizing a 3.1-inch 3k3k LC display.
Transitioning to high-resolution VR LCD displays presented material and process challenges that demanded careful attention. The research emphasizes the importance of employing high-resolution liquid crystal displays (LCDs) to address light field resolution issues. The authors dive deep into the strategies to enhance LCD resolution, focusing on aperture and contrast ratios through specialized pixel designs and driving techniques.
The paper does not limit its exploration to the advancements in VR displays alone. It takes a step further and introduces novel applications of light field technology beyond the realm of virtual reality. Specifically, it highlights its potential in vision correction for VR systems. By utilizing light field technology, both vision correction and the expansion of the eyebox are achieved, resulting in an elevated overall virtual reality experience and enhanced user comfort.
The paper delves into the optics of light field virtual reality, elucidating the creation of elemental image (EI) arrays through a lens array and spatially multiplexed light field optics. This innovative approach generates volumetric virtual images that accurately simulate proper eye accommodation, eliminating the need to address VAC. The authors further focus on a recently developed INNOLUX LCD with impressive resolution and pixel density. By introducing a 15-degree tilt between panels, the binocular FOV is expanded, ensuring exceptional angular resolution.
Visual correction plays a vital role in enhancing the overall virtual reality experience. The paper introduces a ray tracing-based graphical process called “corrected eye box mapping,” which facilitates the correction of myopia, hyperopia, and astigmatism. This advanced procedure takes into account parameters such as spherical power (SPH), cylinder power (CYL), and cylinder axis (AXIS) to provide comprehensive visual correction.
The paper offers a comprehensive exploration of the development of high-resolution light field displays. It encompasses advancements in display design, pixel architecture, and vision correction through the integration of light field technology. This research significantly contributes to the progression of light field displays, paving the way for enriched visual experiences within high-resolution VR systems. The future of near-eye displays looks promising as researchers continue to push the boundaries of technology to create more immersive and visually comfortable virtual reality experiences.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.
Leave a Reply