In a groundbreaking development, a team of researchers led by Academician DU Jiangfeng from the University of Science and Technology of China (USTC) has made significant strides in the exploration of exotic spin interactions. By utilizing solid-state spin quantum sensors based on nitrogen-vacancy (NV) centers in diamond, the team has successfully investigated these interactions at
Physics
In an extraordinary feat of scientific ingenuity, researchers at the National Institute of Standards and Technology (NIST) have made significant strides in the field of spintronics. By utilizing neutron imaging and a reconstruction algorithm, they have successfully unveiled the 3D shapes and dynamics of atomic magnetic formations known as skyrmions. These unique arrangements have the
Researchers at the University of Hong Kong (HKU) have made a groundbreaking discovery in the field of color-changing systems. They have successfully designed and developed a pixelated, soft system called a Morphable Concavity Array (MoCA). This innovative technology has the ability to change color by manipulating light, making it an incredibly versatile tool with applications
Black holes are captivating cosmic entities that possess an incredibly strong gravitational force, which prevents any matter or electromagnetic waves from escaping. Extremal Kerr black holes are a specific class of black holes that are uncharged, stationary, and have the remarkable characteristic of having coinciding inner and outer horizons. While extensive research studies have been
Dynamic windows have long been a subject of interest in the field of engineering and materials science. These windows have the ability to switch between various modes, providing building occupants with flexibility and control over their environment. Researchers have recently made significant strides in this area, specifically in the development of a material for next
Microcombs have the potential to transform our understanding of the universe and revolutionize healthcare. These tiny devices can offer insights into distant planets beyond our solar system and enable us to monitor our health in unprecedented ways. However, the current generation of microcombs falls short of their full potential due to their inefficiency. Fortunately, a
Near-eye displays have revolutionized portable devices, offering individuals the opportunity to immerse themselves in virtual reality. The development of these displays focuses on two primary objectives: creating immersive experiences and ensuring visual comfort. While a larger field of view (FOV) enhances immersion, addressing the Vergence-Accommodation-Conflict (VAC) is crucial for comfortable vision. Researchers have dedicated their
The quest for insights into the nature of dark matter has puzzled scientists for decades. Dark matter, which makes up 84% of the matter in the universe, remains a mystery despite the best efforts of physicists around the world. Professor Anthony Thomas, Elder Professor of Physics at the University of Adelaide, acknowledges the challenges scientists
Physics, often regarded as one of the “hard” sciences, plays a pivotal role in our understanding of the world. It delves into the fundamental principles that govern the physical universe, exploring matter, energy, their interactions, and much more. While not everyone becomes a physicist, the basic ideas of physics permeate our daily lives, shaping our
In this composition, we will embark on a trip deep into the witching realm of earthquakes, slipping light on the intricate drugs that govern these admiration-inspiring natural circumstances. Our charge is to give you with a profound and comprehensive understanding of earthquakes, enabling you to grasp the abecedarian principles behind. The Dynamic Nature of Our
Physics, man! It’s like this crazy cool thing that secretly rules our daily lives. You know, beyond the boring labs and classrooms, it’s those physics formulas that make our homes tick! From force and motion to energy transfer, these formulas are the unsung heroes of our appliances, making sure they work like a charm. Get
A team of international researchers has made a groundbreaking discovery in quantum materials by measuring the electron spin in matter for the first time. The findings, published in Nature Physics, open up new possibilities for quantum technologies that could have applications in renewable energy, biomedicine, electronics, and quantum computers. The team used advanced experimental techniques
Researchers from the University of Groningen, along with colleagues from the universities of Nijmegen and Twente in the Netherlands and the Harbin Institute of Technology in China, have discovered a new superconductive state that could have significant applications in the field of superconducting electronics. The team has presented evidence for a variant of the FFLO
In the world of quantum computing, it is important to have scalable photonic quantum computing architectures that rely on low-loss, high-speed, reconfigurable circuits and near-deterministic resource state generators. Recently, in a report published in Science Advances, Patrik Sund and his team at the center of hybrid quantum networks at the University of Copenhagen and the
EPFL scientists have developed a new technique for creating “density waves” in an atomic gas that could revolutionize our understanding of quantum matter. The research was published in the journal Nature on May 24. According to Professor Jean-Philippe Brantut at EPFL, “Cold atomic gases were well known in the past for the ability to ‘program’