The National Institute of Standards and Technology (NIST), in collaboration with NASA’s Jet Propulsion Laboratory and the University of Colorado Boulder, has successfully developed a ground-breaking superconducting camera. This extraordinary achievement has resulted in a camera with an unprecedented 400,000 pixels, which is 400 times more than any existing device of its kind. By integrating
Physics
Quantum systems research is pushing boundaries in the development of programmable quantum devices. The Quantum Systems Accelerator (QSA) is at the forefront of this endeavor. Collaborating with Lawrence Berkeley National Laboratory (Berkeley Lab), the University of California, Berkeley (UC Berkeley), and Los Alamos National Laboratory, QSA scientists conducted a groundbreaking series of experiments utilizing a
Investigating systems consisting of self-propelled particles, also known as active particles, is currently a rapidly growing area of research. In theoretical models for active particles, it is commonly assumed that the particles’ swimming speed remains constant. However, in many experimental scenarios, such as particles propelled by ultrasound for medical applications, the propulsion speed depends on
In the realm of wave mechanics, the interaction between light and matter has long been a topic of interest. It is well-known that when light encounters a medium, its speed appears to slow down. However, a recent study conducted by researchers from the University of Eastern Finland and Tampere University has shed new light on
When we think of illuminating something with a brighter light source, we expect the resulting image to be brighter as well. This rule holds true for ultra-short pulses of laser light, including X-rays. However, recent research has revealed a counterintuitive effect – at very high X-ray intensities, diffraction images “darken” instead of becoming brighter. This
From the moment Antonie van Leeuwenhoek uncovered the microscopic world of bacteria in the seventeenth century, scientists have been tirelessly striving to delve deeper into the realm of the infinitesimally small. The diffraction limit, a physical constraint that arises from the wave nature of light, sets a boundary on how closely we can scrutinize an
We find ourselves in an era of immense data, where information flows incessantly. With the exponential growth in data, the energy consumption of data centers has become a major concern, contributing significantly to environmental pollution. Researchers worldwide have delved into the development of polygonal computing systems that consume less power and offer higher computational speed.
In a groundbreaking discovery, a group of researchers has unlocked the ability to manipulate light as if it were subject to the forces of gravity. Published in the prestigious journal Physical Review A on September 28, 2023, this study holds immense promise for advancements in optics, materials science, and the future development of 6G communications.
Superconductivity, the ability of materials to conduct electrical current with virtually no resistance, has long been a subject of fascination and research for scientists. Discovering ways to enhance superconductivity could greatly benefit various technological applications, such as electronic devices and energy systems. K3C60, an organic superconductor, has shown potential for light-induced superconductivity. In a recent
The ongoing COVID-19 pandemic highlighted the urgent need for comprehensive research on respiratory droplets and their role in disease transmission. A team of scientists from the Max Planck Institute for Chemistry, in collaboration with experts from various other institutions, has taken up the task of collating publicly available information on droplet properties. Their efforts aim
Researchers at the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg, Germany, have been conducting in-depth investigations into the use of tailored laser drives to manipulate quantum materials. They have particularly focused on unconventional superconductors and their response to non-equilibrium states. Until recently, the complexity of the experiments has limited
Researchers at Huazhong University of Science and Technology in China have made a significant advancement in the field of optical chip technology. They have developed an easy-to-use optical chip that can self-configure to achieve various functions. This breakthrough has the potential to enhance optical neural networks, which are used in a wide range of data-heavy
The Large Hadron Collider (LHC) is the perfect environment for the search of new particles. Scientists believe that the theory of supersymmetry holds the key to the existence of partner particles for each known fundamental particle. These supersymmetric particles could potentially provide answers to various unresolved questions in science, including the origin of dark matter,
The size of the proton, a subatomic particle that constitutes the nucleus of an atom, has been a subject of scientific inquiry for many years. Despite extensive research efforts, scientists have struggled to determine its exact radius. In 2010, a new measurement technique involving laser spectroscopy of muonic hydrogen yielded a significantly smaller proton radius
In the realm of condensed matter physics, the convergence of two lattices with distinct angles or periodicities gives birth to a fascinating phenomenon known as a moiré superlattice. Within this superlattice, a hidden player emerges – the moiré flatband. These flatbands have the ability to shape advanced light-matter interactions, ranging from laser emission to second