A groundbreaking technology has emerged to revolutionize the production of green hydrogen by addressing the limitations of current catalyst electrodes. Led by a team of researchers from the Department of Materials Science and Engineering and the School of Energy and Chemical Engineering at UNIST, along with collaborators from King Abdullah University of Science and Technology
Chemistry
The process of converting methane into methanol is currently energy and resource-intensive, relying heavily on rare and expensive transition or noble metals. While catalyst systems for direct oxidation of methane to methanol have been developed in the past decade, most of them have been using these costly metals. A recent study by a group of
In a groundbreaking discovery, researchers at the University of Virginia School of Engineering and Applied Science have unlocked the potential of MOF-525, a material with the ability to extract valuable resources from captured carbon dioxide. This breakthrough has far-reaching implications for addressing the issue of greenhouse gas emissions and has the potential to revolutionize the
Auxetic materials are a category of materials that defy common sense by becoming wider and fatter when stretched and thinner when compressed. These materials have unique properties that make them perfect for a variety of applications, from sneaker insoles to bomb-resilient buildings. Despite their potential, auxetic products have been slow to enter the market. Researchers
In a groundbreaking study published in Science, Prof. Bozhi Tian’s lab has developed a prototype for what they call “living bioelectronics.” This innovative technology combines living cells, gel, and electronics to create devices that can seamlessly integrate with living tissue. The team’s patches, composed of sensors, bacterial cells, and a starch-gelatin mix, have shown promising
The field of chemical reactions is constantly evolving, with researchers at UC Santa Barbara pushing the boundaries by harnessing the power of light. In a groundbreaking study published in Nature, chemistry professor Yang Yang and his team from the University of Pittsburgh unveiled a novel approach using photobiocatalysis to synthesize non-canonical amino acids. These amino
Protein structure prediction has long been a significant focus for researchers seeking to understand the complexities of human health and disease. The way in which proteins fold into unique structures plays a crucial role in determining their functions and interactions within the body. Traditional computational approaches have been instrumental in this field, but limitations exist
Proteins are vital molecules in the functioning of cells, carrying out various processes essential for life. To perform their functions accurately, proteins must have the correct three-dimensional structure. Recently, the HUN-REN-ELTE Protein Modeling Research Group introduced a groundbreaking method in Nature Communications called LoCoHD (Local Composition Hellinger Distance), which allows for the comparison of protein
The biorefining industry has long grappled with the challenge of commercializing lignin, a bio-based compound abundant in wood biomass. Chemists from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences have introduced an innovative approach to harness lignin condensation for the efficient utilization of lignocellulose. This novel method, which was published
In multicellular organisms, such as animals and plants, cells have complex functions that require interactions between various proteins. However, our current understanding of protein-protein interactions often lacks cellular contexts due to the limitations of in vitro studies. To address this gap, a collaborative research team from The University of Hong Kong recently developed a novel
The utilization of the greenhouse gas CO2 as a chemical raw material has the potential to not only decrease emissions but also reduce the consumption of fossil feedstocks. One way to achieve this is through the electrocatalytic production of ethylene, a crucial chemical raw material, from CO2. Ethylene serves as a starting material for the
The world is facing a pressing issue of greenhouse gas emissions, particularly carbon dioxide (CO2), contributing to global warming and climate change. However, what if these emissions could be transformed into valuable chemicals? A recent collaborative project between the U.S. Department of Energy’s (DOE) Argonne National Laboratory, Northern Illinois University, and Valparaiso University has brought
The use of natural materials such as bone, bird feathers, and wood has long fascinated scientists due to their intelligent approach to physical stress distribution despite their irregular architectures. However, the correlation between stress modulation and the structures of these materials has remained a mystery. A recent study has shed light on this relationship by
The quest for more efficient and cost-effective materials for solar cells has been a driving force in the renewable energy industry. With a shift towards incorporating solar energy into our daily lives, the need to find materials that can efficiently convert sunlight into electricity has never been greater. While silicon has been the go-to material
Chemists at the University of Münster have successfully developed a method for the selective integration of the difluoromethyl group into pyridines. This development opens up new possibilities for drug research by allowing for the creation of bioactive molecules with enhanced properties. Why the Difluoromethyl Group Matters The difluoromethyl group, consisting of carbon, two fluorine atoms,