Nitrenes are a type of electrophile molecules that contain a neutral atom bonded to a single other substituent. Due to their structure with just six electrons in their valence level, they typically have very short reaction times, often in the nanosecond range. This quick reactivity has posed challenges for chemists looking to utilize nitrenes in
Chemistry
Somatostatin receptors (SSTRs) are a vital group of G protein-coupled receptors (GPCRs) that are responsible for regulating hormone secretion and suppressing tumor growth. Among the five subtypes of SSTRs, SSTR5 is particularly noteworthy due to its high expression in the pituitary gland, where it controls the release of essential hormones like adrenocorticotropic hormone, prolactin, and
The innovative project aimed at re-purposing existing drugs for their potential as antibiotics has resulted in the discovery of a highly promising candidate with a potent and unique way of killing drug-resistant bacteria. The collaboration between the University of Leiden, the Netherlands, and the John Innes Centre, UK, screened a chemical library of 352 small
Shooting a movie in the lab requires special equipment. Especially when the actors are molecules—invisible to the naked eye—reacting with each other. According to Prof. Emiliano Corté, the journey to capture the elusive chemistry on film is akin to trying to document tiny lava flows during a volcanic eruption with a smartphone camera. However, the
Organ preservation has long been hindered by cryogenic damage, which can lead to irreversible damage and organ failure. This issue has posed significant challenges to advancements in transplantation and medical treatments, ultimately impacting the success rates of organ transplants and leaving many patients on long waiting lists. A Promising Solution A recent study led by
Tungsten pentaboride, WB5-x, has recently gained attention from researchers due to its promising catalytic properties. Led by Professor Alexander Kvashnin, a group of scientists from Skoltech’s Energy Transition Center conducted a study on this new catalyst and discovered its potential applications in various fields. This article will delve into the findings of the research and
Esters, the chemical compounds responsible for the sweet smell of fruits like strawberries, have a wide range of applications in various industries, from pharmaceuticals to cosmetics. However, the conventional methods used to break down esters to produce desirable alcohols and other chemicals can be costly and harmful to the environment. Scientists have traditionally relied on
Traditional methods of producing hydrogen peroxide (H2O2) have long been associated with high energy consumption, expensive catalysts, and hazardous solvents. However, a group of chemists from the National University of Singapore (NUS) have made a groundbreaking discovery by developing hexavalent photocatalytic covalent organic frameworks (COFs) that mimic natural photosynthesis to produce H2O2 efficiently and sustainably.
Vitamin B6 is a crucial nutrient for brain metabolism, as highlighted by researchers from Würzburg University Medicine. Studies have shown that a deficiency in vitamin B6 can have detrimental effects on brain performance, leading to impaired memory, learning abilities, and even mood disorders. Individuals with low levels of vitamin B6 may be at a higher
High-entropy alloys have been gaining attention in the scientific community for their potential to withstand extreme environments, such as those in nuclear fusion reactors and hypersonic flights. These alloys, made up of complex combinations of multiple metals, are designed to achieve specific properties like strength, toughness, and resistance to corrosion. One such alloy, the Cantor
California’s transition to renewable fuels presents a challenge in the form of storing power for the electric grid. The fluctuating nature of solar and wind power, which drops at night and declines in winter, poses a hurdle in maintaining a consistent energy supply. As a result, the state heavily relies on natural gas to balance
Hydrogen (H2) has long been recognized as a promising fuel for reducing greenhouse gases, particularly when produced through the splitting of water molecules (H2O) using renewable energy sources. Despite the apparent simplicity of this process, the chemistry behind breaking water into hydrogen and oxygen is extraordinarily complex. This complexity arises from the need for catalysts
It’s a common woe many of us face – split ends. We all have those days where our hair just doesn’t cooperate, but what exactly causes this hair damage? The team at Trinity College Dublin, led by Professor David Taylor, has taken on the challenge of investigating this knotty problem. While Prof. Taylor is no
Halogen bonds play a crucial role in directing sequential dynamics in multi-functional crystals, offering insights into ultrafast-response times for optical storage. These intermolecular interactions are formed between a halogen atom and another atom with high electron density, influencing crystal engineering and the study of photoinduced structural deformations. A team of researchers led by Assistant Professor
A groundbreaking technology has emerged to revolutionize the production of green hydrogen by addressing the limitations of current catalyst electrodes. Led by a team of researchers from the Department of Materials Science and Engineering and the School of Energy and Chemical Engineering at UNIST, along with collaborators from King Abdullah University of Science and Technology