The findings, which have been published in the journal Scientific Reports, began with the development of Micaela Giani’s Ph.D. thesis. Giani conducted in vitro tests to demonstrate the antioxidant activity of the pigment and its effect on biocatalysts involved in pathologies such as diabetes and metabolic syndrome.
After the results were made public, the researchers wondered what would happen if they added the pigment to cancer cells. They hypothesized that since the pigment has an antioxidant activity almost 300 times higher than other antioxidants, it could limit the growth and reproduction ability of cancer cells.
The research group worked with Dr. Gloria Peiró, a pathologist at HGUDB and lecturer in the UA Department of Biotechnology, and Yoel Genaro Montoyo-Pujol, a Ph.D. in Experimental and Biosanitary Sciences and researcher at UA. They tested the effect of the pigment in vitro in cell lines representing different intrinsic phenotypes of breast cancer and a line of healthy breast tissue. They concluded that in certain doses, the pigment does not harm healthy cells but limits the growth capacity of neoplastic cells.
According to Professor in Biology and director of the group Rosa María Martínez, this finding opens the door to biomedicine and the design of new strategies to fight cancer using natural compounds that are not harmful to the body.
Halophilic archaea are extremophilic microorganisms that require a hypersaline environment to thrive. They mainly exist in coastal salt marshes, inland salt marshes, or hypersaline lakes. These microorganisms synthesize rare C50 carotenoid pigments called bacteriorruberin (BR) and its derivatives monoanhydrobacterioruberin (MABR) and bisanhydrobacterioruberin (BABR).
Based on this discovery, the researchers plan to extend the study to different cell lines of other types of tumors. They will continue with tests on tissue samples from biopsies or surgical specimens to design possible treatment protocols using this pigment. The researchers will then move on to animal studies before reaching clinical use in patients.
The research group has discovered the anti-cancer potential of a pigment produced by halophilic archaea found in the Santa Pola salt flats. The study has opened the door to biomedicine and new strategies to fight cancer using natural compounds that are not harmful to the body.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.
Leave a Reply