The newly developed technique involves passing samples through a strong magnetic field, followed by reading the emitted radio waves from their atoms. This process helps reveal the composition of carbon isotopes in the molecule, providing a unique fingerprint for each chemical. This breakthrough is crucial in enabling scientists to track the spread of forever chemicals in the environment, offering insights into their movement and distribution.
Forever chemicals are characterized by their strong molecular bonds, which make them resistant to breaking down in the environment. While these properties are beneficial in various applications, they also contribute to the persistence of these chemicals in soil and organic matter, leading to environmental pollution. The complex molecular structure of forever chemicals poses challenges for conventional chemical fingerprinting methods, which rely on breaking molecules apart in a mass spectrometer.
To overcome the limitations of traditional fingerprinting techniques, the researchers utilized nuclear magnetic resonance (NMR) spectroscopy, a technology that can analyze a molecule’s structure and isotopes without disassembling it. By measuring the mix of carbon isotopes bonding to fluorine atoms in each molecule, the researchers were able to create a unique identifier, akin to a barcode, for tracking the origin of the chemical.
The newly developed technique has broad applications beyond tracking forever chemicals. It can be utilized in various fields, such as detecting counterfeit drugs, astrobiology research, and even exploring early Earth metabolism. By harnessing tools from different scientific disciplines and innovatively combining them, the researchers have opened up new possibilities for understanding organic chemistry and its implications for environmental and biological studies.
The researchers are currently conducting a pilot study to test the effectiveness of the technique on pollutants found in the city of Austin’s water bodies. If successful, this approach could be valuable for state and federal agencies tasked with monitoring and tracking the spread of water-borne forever chemicals. The potential for this advanced technique extends far beyond current environmental concerns, offering a new frontier of isotope information that could revolutionize various scientific disciplines.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.
Leave a Reply