Categories: Physics

Unlocking Giant Magneto-Superelasticity in Functional Materials

A groundbreaking development in the field of materials science has recently surfaced, showcasing a remarkable achievement of a 5% giant magneto-superelasticity in a Ni34Co8Cu8Mn36Ga14 single crystal. This advancement was made possible through the introduction of arrays of ordered dislocations, resulting in the formation of preferentially oriented martensitic variants during the magnetically induced reverse martensitic transformation. The findings from this innovative research have been documented in the prestigious journal, Advanced Science.

Elasticity, which refers to the ability of materials to revert to their original shape after deformation, is a fundamental property observed in various substances, with most metals exhibiting a strain of 0.2%. However, the realm of superelasticity widens when exploring shape memory and high entropy alloys, which can showcase strains of several percent, typically triggered by external stresses. Magneto-superelasticity, fueled by a magnetic field, holds immense importance in facilitating contactless material operation, paving the way for the development of new large stroke actuators, and efficient energy transducers.

The Research Endeavor

A collaborative effort between researchers from the High Magnetic Field Laboratory at the Hefei Institutes of Physical Science of the Chinese Academy of Sciences and Prof. Jiang Chengbao and Prof. Wang Jingmin from the School of Materials Science and Engineering at Beihang University spearheaded the insightful study. By subjecting the Ni34Co8Cu8Mn36Ga14 single crystal to stress-constrained transition cycling (SCTC) training through the application of compressive stress, the team successfully introduced ordered dislocations with a specific orientation. This strategic process influenced the evolution of distinct martensitic variants during the reversible transformation triggered by a magnetic field.

The integration of reversible martensitic transformation with the preferential orientation of the martensitic variants led to the extraordinary achievement of a 5% giant magneto-superelasticity in the single crystal. Furthermore, a device leveraging a pulsed magnetic field was devised with this exceptional material. Operating at room temperature with a pulse width of 10 ms, the device showcased a substantial stroke, courtesy of the giant magneto-superelasticity. In practical applications, it demonstrated a swift response to an 8 ms pulse with a minimal delay of approximately 0.1 ms.

In closing, Prof. Wang emphasized the profound impact of this research by stating, “Our work provides an attractive strategy to access high-performance functional materials through defect engineering.” This breakthrough not only sheds light on the realm of magneto-superelasticity but also opens doors to a new era of advanced functional materials with unparalleled capabilities.

adam1

Recent Posts

Revolutionizing Sleep Apnea Treatment: The FDA Approves Zepbound

In a landmark decision, US health authorities have sanctioned the first-ever drug specifically targeting sleep…

4 hours ago

The Link Between Daily Coffee Consumption and Reduced Head and Neck Cancer Risk

Recent research has shed light on the intriguing relationship between daily coffee and tea consumption…

20 hours ago

The Celestial Perspective: Reflections from the Edge of Space

The Earth, often described as a "blue marble," stands as a radiant beacon amidst the…

1 day ago

Investigating Multi-Particle Quantum Interference: A New Frontier in Quantum Mechanics

In recent years, the exploration of quantum systems has taken on profound significance, especially as…

1 day ago

The Digital Advertising Monopoly: Unpacking Google’s Dominance

In the world of digital marketing, split-second decisions govern the visibility of ads seen by…

1 day ago

Revolutionizing Infection Research: The Discovery of a Novel Sphingomyelin Derivative

Recent advancements in the field of microbiology have shed light on the complex world of…

1 day ago

This website uses cookies.