Categories: Technology

University of Bristol Scientists Develop Sponge Device to Improve Robot Grasping

Researchers at the University of Bristol have developed a new device made from a simple sponge that can help robots grasp objects more delicately, by mimicking the nuanced touch, or variable stiffness, of a human hand. The device can be used to improve the load capacity of soft robots or reduce damage on hard robots. The findings were published at the IEEE International Conference on Robotics and Automation (ICRA) in 2023.

Improved Grasping

Despite the impressive capabilities of modern robots, they can struggle with simple tasks such as holding an egg due to their rigidity. The researchers found that variable stiffness was the key to improving this. Humans have soft tissues surrounding their rigid bones that can naturally mitigate force. Robots lack this nuance. The team’s solution was to develop a soft device that can be mounted on the end of a robotic arm to make contact with objects safer.

The researchers used silicone sponge to create the device. This is a porous elastomer, similar to a cleaning sponge used for everyday tasks. By squeezing the sponge, the stiffness of the device can be altered, making it an effective variable-stiffness device. The sponge is also cheap and easy to fabricate, making it an ideal material for a wide range of applications.

Applications

The device has potential applications in a range of industries, including manufacturing and healthcare. In industrial settings, the device could be used to grip jellies, eggs, and other fragile substances. In healthcare, the device could be used in ultrasound imaging and robotic polishing, where tunable-stiffness requirements are essential.

Lead author Tianqi Yue from Bristol’s Department of Engineering Mathematics believes that the sponge device has great potential due to its low cost and light weight. The team is now looking at making the device achieve variable stiffness in multiple directions, including rotation.

The researchers at the University of Bristol have developed a novel solution to improve robots’ ability to grasp objects delicately. By using a simple sponge, they have created a variable-stiffness device that can be used in a range of industries and healthcare settings. The device’s low cost and light weight make it an attractive option for a wide range of applications.

adam1

Recent Posts

Unveiling the Mysteries of AI in Chemical Research

Artificial intelligence (AI) is transforming a myriad of fields, acting as a powerful ally for…

18 hours ago

Decoding Ecological Recovery: Insights from the Messinian Salinity Crisis

The Mediterranean Sea, a historically rich marine environment, has undergone significant ecological fluctuations due to…

19 hours ago

The Enduring Mystique of Saturn’s Rings: A New Perspective on Their Age

Saturn, the jewel of our solar system, is synonymous with its striking rings. For centuries,…

20 hours ago

Quantum Heat Engines: Unraveling Chirality in Non-Hermitian Dynamics

In our increasingly energy-conscious society, heat engines play a pivotal role in converting thermal energy…

20 hours ago

Revolutionizing Computing: Insights from Biological Mechanisms

A groundbreaking collaboration among researchers at Texas A&M University, Sandia National Labs—Livermore, and Stanford University…

21 hours ago

Unraveling the Microbial Mystery: Fungal Communities and Respiratory Conditions

The human body is a complex ecosystem teeming with microorganisms that influence our health in…

23 hours ago

This website uses cookies.