Categories: Health

The Search for the Source of Motion Sickness

For many, the thought of driving down a winding road can induce feelings of nausea and discomfort. But have you ever wondered what causes this unpleasant sensation? Scientists have long been trying to pinpoint the brain cells responsible for motion sickness, and a recent study involving unsuspecting mice has shed some light on the matter.

In this study, mice were placed in a plastic tube and strapped onto a rotating spinner. The purpose of this setup was to observe which neurons in their brains were activated after experiencing motion sickness. As the mice spun around, their body temperature dropped, they avoided food, and they cowered in their cages – all clear signs of the motion sickness they were experiencing.

Based on previous research, the team of scientists led by neuroscientist Pablo Machuca-Márquez decided to focus their attention on a group of neurons known as vestibular nuclei. These neurons are responsible for relaying signals from the ear to the brain and are believed to play a role in motion sickness. By inhibiting different subsets of these neurons and observing the mice’s responses, the researchers hoped to gain a better understanding of the neural mechanisms behind motion sickness.

During the experiment, the researchers discovered that a specific group of vestibular neurons expressing a protein called VGLUT2 played a crucial role in inducing motion sickness. When these neurons were deactivated, the mice no longer experienced motion sickness after being spun around. On the other hand, switching on these neurons without any spinning caused motion sickness-like behaviors in the mice.

Further investigation revealed that neurons expressing both VGLUT2 and a receptor called CCK-A were primarily responsible for the motion sickness behaviors observed in the mice. The researchers mapped the circuitry of these neurons and found that they were connected to an area of the brain known as the parabrachial nuclei. This region of the brain is involved in regulating appetite suppression, body temperature, and lethargy.

If the findings from this mouse study can be extrapolated to humans, it could potentially provide researchers with a clearer target for developing medications to alleviate motion sickness. Most current anti-motion sickness medications work by reducing activity in the brain’s balance system or limiting signals between the brain and gut. However, these medications often come with side effects such as drowsiness and are most effective when taken before the onset of motion sickness.

The discovery of the specific neural pathways and receptors involved in motion sickness could open up new possibilities for developing more targeted and effective medications. By blocking the CCK-A receptors, the researchers were able to alleviate some motion sickness behaviors in the mice. If similar results can be achieved in humans, it could mean a breakthrough in the treatment of motion-induced discomfort.

The search for the source of motion sickness has been a challenging endeavor, but this recent study on mice has provided valuable insights into the neural mechanisms behind this phenomenon. By identifying the specific neurons and receptors involved, researchers now have a potential target for developing more effective medications with fewer side effects. While further research is needed to confirm these findings in humans, the possibility of finding a solution to motion sickness is an exciting prospect that could greatly improve the travel experience for many.

adam1

Recent Posts

The Celestial Perspective: Reflections from the Edge of Space

The Earth, often described as a "blue marble," stands as a radiant beacon amidst the…

7 hours ago

Investigating Multi-Particle Quantum Interference: A New Frontier in Quantum Mechanics

In recent years, the exploration of quantum systems has taken on profound significance, especially as…

9 hours ago

The Digital Advertising Monopoly: Unpacking Google’s Dominance

In the world of digital marketing, split-second decisions govern the visibility of ads seen by…

9 hours ago

Revolutionizing Infection Research: The Discovery of a Novel Sphingomyelin Derivative

Recent advancements in the field of microbiology have shed light on the complex world of…

9 hours ago

The Hidden Impact of Recreational Activities on Waterways

As the summer season reaches its climax, many people eagerly flock to rivers, lakes, and…

10 hours ago

The New Era of Space Exploration: SpaceX’s Starship Test Launch Achievements

In a groundbreaking achievement, SpaceX has marked a significant milestone in space exploration with its…

11 hours ago

This website uses cookies.