Categories: Earth

The Dangerous Impact of Cancer-Causing Flame Retardants Found in Everyday Items

In a recent study published in the journal Environment International, researchers from Brunel University London and the University of Birmingham have shed light on the alarming discovery that cancer-causing flame retardants found in everyday items can be absorbed through the skin and make their way into the bloodstream within 24 hours. This study utilized state-of-the-art 3D-printed skin models to investigate the potential risks associated with these toxic additives, specifically polybrominated diphenyl ethers (PBDEs), commonly found in microplastics.

The research revealed that sweatier skin has a higher capacity to absorb PBDEs compared to dry skin when in contact with microplastics containing these harmful chemicals. This highlights the concerning fact that skin absorption may serve as a significant route for human exposure to these cancer-causing agents. Dr. Ovokeroye Abafe, an exposure scientist at Brunel University, emphasized the importance of this finding in understanding the impact of toxic additive chemicals on public health.

Microplastics, which are tiny plastic particles measuring less than five millimeters, have been identified in various parts of the human body, sparking concerns about their potential health risks. Studies on different organisms have shown that microplastics can disrupt hormones, alter feeding patterns, and cause liver damage. Additionally, flame retardants like PBDEs are particularly worrisome due to their known carcinogenic and endocrine-disrupting properties. Despite bans on certain PBDE mixes, these chemicals continue to pose environmental risks.

The findings of this study underscore the urgent need for regulators and policymakers to address the risks associated with skin exposure to microplastics containing toxic additives. The research demonstrated that PBDEs embedded in microplastics can permeate the skin barrier and enter the bloodstream, raising concerns about the potential long-term health consequences of such exposure. Dr. Abafe highlighted the need for further investigations into the absorption of other chemical additives present in microplastics and the reassessment of existing legislation.

The study conducted by researchers from Brunel University London and the University of Birmingham represents a significant step towards understanding the impact of cancer-causing flame retardants found in everyday items on human health. The ability of these toxic additives to be absorbed through the skin and enter the bloodstream within a short period underscores the importance of regulating the use of such chemicals in consumer products. As we continue to grapple with the environmental and health repercussions of microplastics, it is crucial for policymakers to take decisive action to safeguard public health and mitigate the potential risks associated with these pervasive pollutants.

adam1

Recent Posts

The Celestial Perspective: Reflections from the Edge of Space

The Earth, often described as a "blue marble," stands as a radiant beacon amidst the…

16 hours ago

Investigating Multi-Particle Quantum Interference: A New Frontier in Quantum Mechanics

In recent years, the exploration of quantum systems has taken on profound significance, especially as…

18 hours ago

The Digital Advertising Monopoly: Unpacking Google’s Dominance

In the world of digital marketing, split-second decisions govern the visibility of ads seen by…

18 hours ago

Revolutionizing Infection Research: The Discovery of a Novel Sphingomyelin Derivative

Recent advancements in the field of microbiology have shed light on the complex world of…

18 hours ago

The Hidden Impact of Recreational Activities on Waterways

As the summer season reaches its climax, many people eagerly flock to rivers, lakes, and…

19 hours ago

The New Era of Space Exploration: SpaceX’s Starship Test Launch Achievements

In a groundbreaking achievement, SpaceX has marked a significant milestone in space exploration with its…

19 hours ago

This website uses cookies.