Categories: Space

Scientists puzzled by ultra-bright celestial object that should have exploded

Scientists have been left perplexed by an ultra-bright celestial object that is brighter than it should be. NASA has been tracking ultraluminous X-ray sources, which can be 10 million times brighter than the Sun, to understand their workings. These objects break the Eddington limit, which is a fundamental rule of astrophysics that states that an object can only be so bright before it breaks apart.

The Eddington limit

The Eddington limit is based on the principle that brightness on this scale comes from material that falls towards a massive object, such as a black hole or a dead star, and is pulled by the object’s intense gravity. The more matter that falls towards the object, the brighter it is. However, at a certain point, the radiation it emits should be able to overwhelm the power of the gravity from the massive object. This means that the radiation from the matter should push it away, and it should stop falling in. If it’s not falling in, the matter shouldn’t be radiating, which means the object shouldn’t be that bright. Hence the Eddington limit.

ULXs

Because of the Eddington limit, scientists have questioned whether the ULX’s brightness was indeed caused by enormous amounts of material falling into it. However, a new study looking at M82 X-2, a ULX caused by a pulsating neutron star in the Messier 82 galaxy, put the cone theory to rest. This means that the brightness of this ULX is caused by limit-breaking amounts of material.

Theories

Another theory has become the leading explanation to explain ULXs. In this theory, super-strong magnetic fields shoot out of the neutron star, which would squish the atoms of the matter falling into the star, turning the shape of these atoms from a sphere into an elongated string. This would make it harder for the radiation coming from these squished atoms to push the matter away, explaining why so much matter could fall into the star without breaking apart.

Matteo Bachetti, an author of the study and astrophysicist with Italy’s National Institute for Astrophysics’ Cagliari Observatory, said in NASA’s statement that “observing the sky, we expand our ability to investigate how the universe works. On the other hand, we cannot really set up experiments to get quick answers. We have to wait for the universe to show us its secrets.”

adam1

Recent Posts

Quantum Mechanics Beyond the Cat: Exploring New Frontiers in Quantum Collapse Models

The strange and elusive domain of quantum mechanics, characterized by its counterintuitive principles, often raises…

2 days ago

The Innovative Approach to Heavy Metal Removal from Water: A New Dawn for Water Purification Technologies

Water sources around the globe face increasing threats from pollution, particularly from heavy metals like…

2 days ago

The Unseen Threat: Microplastics and Cardiovascular Health

In recent years, the prevalence of plastics in our environment has become alarmingly evident. Microscopic…

2 days ago

New Landslide Susceptibility Map: A Comprehensive Tool for Risk Management

The U.S. Geological Survey (USGS) has unveiled its groundbreaking nationwide map detailing landslide susceptibility, revealing…

2 days ago

The Dual Edge of Large Language Models: Enhancing and Challenging Collective Intelligence

The rapid rise of large language models (LLMs) has significantly transformed various aspects of our…

2 days ago

Unveiling the Sun: Insights from the Solar Orbiter Mission

The vast expanse of space offers a daunting challenge when it comes to astronomical observations,…

2 days ago

This website uses cookies.