Categories: Physics

Scientists Discover Method for Creating Topological Superconductors

Researchers at the University of Connecticut have discovered a method for creating topological superconductors by manipulating quantum particles in thin layers of ordinary superconductors. Superconductors can conduct electric current without any resistance or energy loss, making them a potential game-changer in many fields, from energy transmission to quantum computing to MRI machines. However, creating superconductors with topological properties has been a challenge until now.

The scientists propose that by slightly twisting stacked layers of two-dimensional materials, they can create topological superconductors. This twisting method is applicable at any angle, and there is a wide range of angles that optimize the characteristics, unlike other materials studied so far. The researchers also found unexpected behaviors for the special value of twist angle, where a new state of magnetism should appear.

The researchers theorize that there is an intricate relation between what happens inside the twisted superconductor layers and a current applied between them. The application of a current makes the quantum particles in the superconductor behave as if they were in a topological superconductor. The scientists expect that this topological superconductor has the potential to be better than anything else currently on the market.

Creating these materials poses challenges to overcome, including making the atoms-thick layers better themselves and determining the difficult-to-measure parameters. However, there is a lot of motivation behind developing these highly complex materials. Topological superconductors are potentially useful in quantum computing, as they serve as a necessary ingredient for proposals of fault-tolerant qubits, the units of information in quantum computing. They also hold promise for precision physics, allowing for unprecedented precision for spin or thermal properties.

The researchers claim that their proposal for current-induced topological superconductivity is essential, and there are already several groups around the world trying to do this. Monolayers of nodal superconductors, necessary for their proposal, have been realized, and experiments on twisted flakes are ongoing. However, the twisted bilayer of these materials has not been demonstrated yet. That’s work for the future.

adam1

Recent Posts

The Critical Role of Cybersecurity in the Paris Olympics

Just like athletes who train rigorously for the Olympic Games, cyberwarriors are also gearing up…

1 day ago

The Wall of Death: A Novel Solution for Maintaining Astronaut Health on the Moon

Exploring the lunar surface has been a dream of humanity for many years. The possibility…

1 day ago

The Impact of Spin Information Direction on Chiral Materials in Spintronics

Spintronics is a fascinating field that focuses on utilizing the spin of electrons to create…

1 day ago

The Future of Quantum Sensing: A Breakthrough in Nanoscale Precision

In a groundbreaking development, researchers at the University of Portsmouth have introduced a cutting-edge quantum…

1 day ago

How to Optimize Your Health by Balancing Your Day

Maintaining good health is something that most people strive for, but achieving it can be…

2 days ago

The Influence of Mantle Dynamics on Earth’s Topography

The movement of tectonic plates has long been known to shape the rocky features of…

2 days ago

This website uses cookies.