Categories: Chemistry

Researchers develop more efficient car catalysts by modifying carrier material

Researchers at Eindhoven University of Technology have developed a new catalyst that can convert toxic carbon monoxide into carbon dioxide gas even at room temperature. The so-called three-way catalytic converter in a car’s exhaust system only works correctly when the exhaust gases are several hundred degrees Celsius. As a result, toxic carbon monoxide remains in the exhaust when starting a car or when driving a hybrid car where the petrol engine and electric motor alternate.

Modifying the Carrier Material

The catalysts in automotive catalytic converters are made by depositing noble metals such as platinum, palladium, and rhodium on a substrate of the material cerium oxide, also known as ceria. However, these noble metals are rare and expensive, so researchers are looking for ways to achieve the same or better catalytic activity using less material.

Lead author Valery Muravev and his team shifted their attention from noble metals to the carrier material underneath, ceria, to improve catalysts. They produced ceria in different crystal sizes and deposited the noble metals as single atoms in the same step. They then studied how well these materials could bind an extra oxygen atom to carbon monoxide.

Improved Performance

The researchers found that small ceria crystals of 4 nanometers improved the performance of the noble metal palladium under cold start conditions with excess carbon monoxide. This improved performance was due to a higher reactivity of the oxygen atoms at smaller ceria crystal sizes. Under more conventional conditions, 8 nanometers was the optimal size of ceria crystals to achieve high catalytic activity at temperatures below 100° Celsius.

This research shows that it pays to look not only at the noble metals but also at the size of the particles that act as the carrier for the active materials when developing catalysts. Varying the carrier material’s particle size offers an interesting new possibility to improve catalysts, which can improve the efficiency and specificity of chemical reactions. This research is essential in the development of processes to combine carbon dioxide from ambient air with green hydrogen to produce fuels or compounds for the production of sustainable plastics.

The researchers are now working with British company Johnson Matthey, a producer of catalysts for the automotive industry, to further explore how to translate this finding into new products.

Overall, this research is a significant step towards creating more efficient and sustainable catalytic converters for cars. By modifying the carrier material of the catalyst, the researchers have found a way to convert toxic carbon monoxide into carbon dioxide gas even at room temperature, improving the efficiency and specificity of chemical reactions.

adam1

Share
Published by
adam1

Recent Posts

Revolutionary Breakthrough: One-Way Sound Wave Propagation

The ability to control the direction in which sound waves propagate has always been a…

1 day ago

The Deadly Cocktail: Chemical Pollution in the Oder River

In early August 2022, the Oder River, which runs along the German-Polish border, was the…

1 day ago

The Role of Serotonin in Depression: A New Perspective

The debate surrounding the correlation between serotonin and depression is crucial for advancing our understanding…

1 day ago

The Future of Quantum Error Correction: A Breakthrough in Many-Hypercube Codes

Quantum error correction has been a topic of interest for scientists for several decades. The…

1 day ago

Climate Crisis: Earth Swelters Through Hottest Summer on Record

The summer of 2024 has been recorded as Earth's hottest on record, heightening the likelihood…

2 days ago

The Impact of Engine Fire on A350 Fleet

Europe's aviation safety agency has recently mandated inspections of part of the Airbus A350 fleet…

2 days ago

This website uses cookies.