Categories: Technology

Researchers Develop Molecular Brake for Stretchable Semiconductors

In a recent study published in the Advanced Functional Materials journal, a joint team of researchers from the Department of Chemical Engineering at POSTECH and the Department of Nano Engineering at Sungkyunkwan University (SKKU) have developed a technology for high-performance organic polymer semiconductors that exhibit both stretchability and electrical functionality. The team was led by Professor Kilwon Cho, along with Ph.D. candidates Seung Hyun Kim and Sein Chung, and Professor Boseok Kang.

Challenges in Developing Stretchable Semiconductors

For semiconductors to be used in flexible devices like skin-attachable medical devices and flexible displays, it is necessary to use stretchable materials instead of rigid ones. However, the force exerted during the stretching of semiconductors can be up to ten times greater than that experienced during simple bending, leading to the breakdown of the semiconductor layers and a decline in their electrical performance. Researchers have been exploring methods to preserve semiconductor performance even under deformation, but a definitive solution to this challenge remains elusive.

The Solution: Molecular Brake

The research team successfully created a flexible molecular photocrosslinker featuring azide-reactive groups at both ends. When exposed to ultraviolet light, this photocrosslinker forms a network structure with the polymer semiconductor, acting as a brake that prevents slipping even under stretching conditions. This molecular brake allows the polymer chains to retain their stretchability and performance without any slipping.

The research team preserved up to 96 percent of the electrical performance of the polymer semiconductor, even when it was stretched to 80 percent. Moreover, the semiconductor exhibited significantly enhanced stretchability and durability compared to conventional semiconductors, clearly demonstrating the effectiveness of the developed technology.

The incorporation of azide photocrosslinkers into the films significantly enhances the stretchability and UV-patternability of organic semiconducting polymers, making it highly valuable for industries requiring large-area production and photolithography for the development of next-generation flexible electronics.

Professor Kilwon Cho said, “This simple approach significantly enhances the stretchability and UV-patternability of organic semiconducting polymers, making it highly valuable for industries requiring large-area production and photolithography for the development of next-generation flexible electronics. By incorporating azide photocrosslinkers into the films, we have successfully preserved the excellent electrical properties of polymer semiconductors for organic thin-film transistors even under significant mechanical deformation.”

This breakthrough in the development of stretchable semiconductors using a molecular brake paves the way for the creation of more groundbreaking flexible devices in various industries.

adam1

Recent Posts

Revolutionary Breakthrough: One-Way Sound Wave Propagation

The ability to control the direction in which sound waves propagate has always been a…

1 day ago

The Deadly Cocktail: Chemical Pollution in the Oder River

In early August 2022, the Oder River, which runs along the German-Polish border, was the…

1 day ago

The Role of Serotonin in Depression: A New Perspective

The debate surrounding the correlation between serotonin and depression is crucial for advancing our understanding…

1 day ago

The Future of Quantum Error Correction: A Breakthrough in Many-Hypercube Codes

Quantum error correction has been a topic of interest for scientists for several decades. The…

1 day ago

Climate Crisis: Earth Swelters Through Hottest Summer on Record

The summer of 2024 has been recorded as Earth's hottest on record, heightening the likelihood…

2 days ago

The Impact of Engine Fire on A350 Fleet

Europe's aviation safety agency has recently mandated inspections of part of the Airbus A350 fleet…

2 days ago

This website uses cookies.