Categories: Physics

Researchers Develop High-Performance Microwave Device Using Cavity Magnon Polaritons

When light interacts with matter, it can produce unique quasi-particles known as polaritons. These particles are half light and half matter. Polaritons have been studied by physicists for a few decades now, with researchers exploring their potential for developing highly performing lasers or other technologies.

Development of a High-Performing Device

Researchers at the University of Manitoba have recently developed a highly performing device based on cavity magnon polaritons that can emit and amplify microwaves. This device was found to significantly outperform previously proposed solid-state devices for coherent microwave emission and amplification at room temperature.

The Creation of a New Polariton

Motivated by the need for coherent on-chip microwave sources in wireless communication and quantum information technologies, the researchers set out to explore the potential use of cavity magnon polaritons. They hoped to achieve high-quality microwave emission and amplification with their device, while retaining its stability and controllability as a hybrid light-matter coupled system.

The researchers created a light-matter coupled system based on cavity magnon polaritons for coherent microwave emission. They ultimately hoped to achieve a higher performance than those reported in previous works, while retaining their device’s stability and controllability as a hybrid light-matter coupled system.

The strong interaction between amplified microwaves and magnons in the researchers’ system produces a new type of polariton, which they dubbed a “gain-driven” polariton. Compared to conventional polaritons realized in previous studies, this gain-driven polariton has a stable phase, which in turn enables the coherent emission of microwave photons.

The Significance of the New Device

In initial evaluations, a proof-of-principle device created by this team of researchers achieved remarkable results, outperforming both spin-toque oscillators (STOs) and solid-state masers developed in the past. Masers are devices that use the stimulated emission of radiation by atoms to amplify or generate microwave radiation.

The new gain-driven polariton realized by the researchers could open exciting new possibilities for the development of highly performing solid-state microwave sources that can be integrated on-chip. These polariton microwave sources are frequency tunable due to the controllability of light-matter interaction and could ultimately be integrated in a broad range of technologies and devices, including wireless communication systems and quantum computers.

“As the physics of gain-driven light-matter interaction is new, our study may also lead to new discoveries beyond microwave applications,” said Can-Ming Hu, the researcher who directed the study. “We have now submitted a patent application, and my students are working on developing prototype devices together with industry partners.”

adam1

Recent Posts

The Development of Precision Pollination Robots to Counteract the Decline of Natural Pollinators

With the alarming rate at which animal species are becoming extinct, the need to protect…

8 hours ago

Freezing Bread: Does It Really Make It Healthier?

The idea of freezing bread to make it healthier has been circulating on social media…

15 hours ago

The Impact of Elon Musk’s Meeting with Chinese Premier Li Qiang

Elon Musk, the founder and CEO of Tesla, recently met with Chinese Premier Li Qiang…

16 hours ago

Decoding the Complexity of Depression: A Genetic Perspective

Depression, with its core experiences of changes in energy, activity, thinking, and mood, has been…

21 hours ago

The Unseen Impact of Human Activities on Earth’s Deep Subsurface

The impact of human activities on Earth's surface has been extensively studied, but what about…

1 day ago

An Innovative Approach to Enhancing Perovskite/Organic Tandem Solar Cells

Solar energy is a promising renewable energy source that can help reduce our dependence on…

1 day ago

This website uses cookies.