Categories: Chemistry

New Study Reveals Details of PET Degradation Process by Bacterial Enzymes

Polyethylene terephthalate (PET) is a popular plastic used to manufacture single-use products such as plastic bottles and packaging due to its rigidity, transparency, and hardness. However, PET’s durability also makes it highly persistent in the environment, potentially taking several hundred years to degrade in the ocean. The biodegradation of PET by polyester hydrolases (or PETases) has been a promising method for eco-friendly plastic waste recycling. Researchers from the Institut de Ciències del Mar (ICM-CSIC) and the University of Leipzig have now uncovered the molecular-level mechanisms for the biodegradation of PET in a new study published in ACS Catalysis.

The study utilized a glass matrix to stabilize the enzymatic reaction intermediates and detect them in real-time using magnetic resonance spectroscopy. The researchers were then able to interpret the spectroscopic data and create a 3D molecular model of the enzymatic PET degradation process using a supercomputer. The study reveals that the interaction of only two PET subunits is sufficient for the enzyme to cut the polymer, and the enzyme can “walk” or slide on the PET chain to move from one cut to the other.

Francesco Colizzi, a leading author of the study, explains that the results “can be very useful for the industry” as it is the first time they can “see” the PET degradation process. The study’s molecular-level understanding of how PET interacts with enzymes could guide the design of new and improved systems for plastic waste recycling. PETases could also be applied to treat PET microplastics from washing microfleece textiles that end up in sewage treatment plants to preserve the marine environment.

In conclusion, the study’s molecular-level understanding of the PET degradation process by bacterial enzymes reveals new possibilities and a potential eco-friendly method for recycling plastic waste. The results can be useful for the industry to design new and improved systems for plastic waste recycling and for preserving the marine environment.

adam1

Share
Published by
adam1

Recent Posts

Dams and Coastal Flooding: A Complex Relationship Unveiled

In contemporary discourse on climate adaptation strategies, the construction of dams has emerged as a…

2 hours ago

Exploring Semaglutide: A Revolutionary Approach to Weight Loss and Beyond

On June 4, 2021, the pharmaceutical landscape witnessed a significant transformation with the introduction of…

2 hours ago

Chirality and Its Promising Role in Spintronics: Innovations from Osaka University

Chirality, a phenomenon that arises when a molecule exists in two forms that are mirror…

3 hours ago

Google’s Antitrust Battle: Navigating Complexities in Online Advertising

In the high-stakes world of online advertising, the accusation that Google maintains an illegal monopoly…

6 hours ago

Harnessing the Power of Extreme Conditions: New Insights into Stellar and Planetary Physics

Stars and planets are far more than mere celestial bodies; they are complex systems characterized…

6 hours ago

Understanding the Global Resurgence of Measles: Addressing the Vaccine Coverage Crisis

The recent report pointing to a staggering increase in measles cases worldwide brings forth urgent…

6 hours ago

This website uses cookies.