Categories: Physics

New Research Could Lead to Efficient Devices that Bridge Matter and Light

A team of researchers from MIT and other institutions have discovered a way to develop new kinds of devices that can efficiently bridge the gap between matter and light. These innovative devices include computer chips that eliminate inefficiencies and qubits, which are the basic building blocks for quantum computers.

The Research

The researchers sandwiched tiny flakes of a material called perovskite between two precisely spaced reflective surfaces. This process allowed the scientists to directly control the momentum of certain quasiparticles within the system, known as exciton-polariton pairs. These quasiparticles are hybrids of light and matter and lie on a spectrum between purely electronic and photonic systems.

The Benefits

The researchers discovered that controlling exciton-polaritons could ultimately make it possible to read and write data to devices based on this phenomenon. This discovery could lead to computer chips that eliminate inefficiencies that are inherent in today’s versions. Additionally, qubits could operate at room temperature instead of ultracold conditions, which is needed by most quantum devices. The quasiparticles used by this team can be easily controlled through multiple variables, making it an energy-efficient way to manipulate the combined state of matter.

The Material

The researchers chose a version of perovskite called phenethylammonium lead iodide, which harvests light very well and turns photons into electrons or excitons, depending on the dimensionality and material properties of the perovskite. This material is easily manufactured using room-temperature, solution-based processing methods, making it relatively easy to produce at scale once practical systems are designed.

The Future

While this work is at an early stage, researchers are still studying the newly discovered effects. Practical applications could be 5 to 10 years away. A more near-term application of the new findings could be in producing new kinds of light-emitting devices, including ones that provide a steerable light source with directional output that can be controlled electronically.

This research could revolutionize the way computer chips and qubits operate, leading to more efficient devices that can operate at room temperature. The discovery of exciton-polaritons and their controllability through multiple variables could be the key to unlocking the potential of matter and light.

adam1

Recent Posts

Transforming Plastic Waste: A Breakthrough in Circular Chemistry

Plastics are ubiquitous in modern life, offering convenience but also presenting a monumental environmental challenge.…

2 days ago

Emerging Health Crisis in the Democratic Republic of Congo: Malaria or Something More?

In the Democratic Republic of Congo (DRC), a concerning health crisis has emerged, drawing attention…

2 days ago

Rethinking Global Water Security: The Importance of Upwind Moisture Sources

Water scarcity is an increasingly pressing issue facing nations across the globe. As populations continue…

2 days ago

The Volcanic Enigma of Io: A Shift in Understanding Our Solar System’s Most Active Moon

Io, one of Jupiter's intriguing moons, has long mesmerized scientists and space enthusiasts alike with…

2 days ago

The Evolution of Home Gaming Consoles: A Deep Dive into Beloved Franchises

In the early 1970s, the gaming landscape was transformed with the advent of home video…

2 days ago

Revolutionizing Information Processing: The Dawn of Photonic Logic Gates

In an era dominated by electronic communication through microchip-based devices, researchers from the University of…

2 days ago

This website uses cookies.