Categories: Technology

Magnetic Soft Robots Created Using Fiber-Based Fabrication System

A research team at MIT has developed a new method of creating magnetic soft robots that provides locomotion under unidirectional magnetic fields. The team combined fiber-based fabrication systems with mechanical and magnetic programming methods to create 3D soft robots that can be controlled using magnets. The development of these robots is an important advancement in the field of soft robotics, as previous efforts to create magnetically controlled soft robots have been plagued by problems with deployment, scaling and production.

The Development of Magnetic Soft Robots

The team at MIT overcame the challenges presented by magnetically controlled soft robots by using fiber-based actuators and magnetic elastomer composites. The actuators were created using thermal drawing, which allowed for the creation of a stretchy ferromagnetic compound. Each of the structures were then subjected to a strain regimen that forced them into a helical structure. These structures allowed for folding on-demand via magnetic pull at multiple points, in a way that led to constriction and relaxation, similar to the way caterpillars move. Adding folding points allowed for greater flexibility. To mimic bipedal motion, folding points were introduced that forced sectioned structures into linear leg and foot shapes.

One of the main challenges to using magnets to control soft robots is the bulkiness of the equipment that is needed. The research team overcame this problem by using fiber-based actuators and magnetic elastomer composites. The resulting 3D robots could be controlled by varying the strain applied to a given robot and the strength of a magnetic field. The result was worm-like robots, some that crawled and some that walked. The researchers note that locomotion was induced using a magnetic field placed orthogonally to the plane of motion.

The robots are designed to be scalable and can be programmed to carry cargo or to perform in unison with other similar robots. The robots are controlled by varying strain and magnetic field strength. The researchers point out that the design of the robots paves the way for their use in both biomedical and engineering applications.

The development of magnetic soft robots is an important advancement in the field of soft robotics. The research team at MIT has overcome the challenges presented by magnetically controlled soft robots by using fiber-based fabrication systems with mechanical and magnetic programming methods. The resulting 3D robots can be controlled using magnets and can be programmed to carry cargo or to perform in unison with other similar robots. The design of the robots is scalable and paves the way for their use in both biomedical and engineering applications.

adam1

Recent Posts

Quantum Mechanics Beyond the Cat: Exploring New Frontiers in Quantum Collapse Models

The strange and elusive domain of quantum mechanics, characterized by its counterintuitive principles, often raises…

31 minutes ago

The Innovative Approach to Heavy Metal Removal from Water: A New Dawn for Water Purification Technologies

Water sources around the globe face increasing threats from pollution, particularly from heavy metals like…

3 hours ago

The Unseen Threat: Microplastics and Cardiovascular Health

In recent years, the prevalence of plastics in our environment has become alarmingly evident. Microscopic…

3 hours ago

New Landslide Susceptibility Map: A Comprehensive Tool for Risk Management

The U.S. Geological Survey (USGS) has unveiled its groundbreaking nationwide map detailing landslide susceptibility, revealing…

4 hours ago

The Dual Edge of Large Language Models: Enhancing and Challenging Collective Intelligence

The rapid rise of large language models (LLMs) has significantly transformed various aspects of our…

5 hours ago

Unveiling the Sun: Insights from the Solar Orbiter Mission

The vast expanse of space offers a daunting challenge when it comes to astronomical observations,…

5 hours ago

This website uses cookies.