Categories: Chemistry

Japanese Researchers Discover New Material That Melts with UV Light and Changes Luminescent Properties

Researchers from Osaka University in Japan have discovered a new class of photo-responsive crystal compounds that can melt when exposed to ultraviolet light, a phenomenon known as photo-induced crystal-to-liquid transition (PCLT). This is the first organic crystalline material found to exhibit changes in luminescent color and intensity during the melting process induced by ultraviolet light. In contrast to materials that usually melt when heated, this discovery is a significant step forward in the field of photo-responsive and reversible adhesives that can be controlled by light.

Changes in Luminescence During Irradiation-Induced Melting Process

The researchers characterized their newly discovered class of PCLT materials and found that the diketone SO, one of the members of the class, showed changes in luminescence during the irradiation-induced melting process. The luminescent evolution during crystal melting showed changes in intensity and color, from green to yellow, indicating molecular-level changes in shape during the PCLT process. The research team realized that they could further investigate these molecular-level changes underlying PCLT to better understand the crystal-melting phenomenon.

Advancing the Understanding of Crystal Melting at the Molecular Level

The researchers used single-crystal X-ray analysis, thermodynamic property analysis, and theoretical calculations to probe the mechanisms governing the behavior of this new PCLT material. They discovered that a disordered layer in the crystal is a key factor for PCLT in this class of materials. By understanding the changes in luminescence that arise from sequential processes of crystal loosening and conformational changes before melting, the researchers were able to advance the current understanding of crystal melting at the molecular level.

This discovery of a novel PCLT material and its characterization provides fundamental insights into the mechanism of crystal melting, enabling greater opportunities for designing PCLT materials with a variety of applications, including photolithography, thermal energy storage, and light-induced adhesion.

adam1

Share
Published by
adam1

Recent Posts

Transforming Crisis into Catalyst: Unraveling Canada’s Arsenic Wildfire Dilemma

The wildfire season of 2023 in Canada has not only been unprecedented in its scale…

12 hours ago

Transformative Power: The Self-Powered Electrostatic Tweezer Revolution

In an era characterized by rapid technological advancements, the emergence of self-powered electrostatic tweezers (SET)…

13 hours ago

Revolutionary Catalyst Paves the Way for Sustainable Hydrogen Production

In a groundbreaking endeavor, a dedicated team of researchers has made significant strides toward solving…

17 hours ago

Wealth Doesn’t Guarantee Longevity: A Wake-Up Call for America

Recent findings have shocked public health experts, revealing a disheartening gap in mortality rates between…

1 day ago

Cosmic Flavor: The Intriguing Nuances of Space-Fermented Miso

In an extraordinary blend of gastronomy and astrobiology, researchers have achieved what may sound like…

1 day ago

Revolutionizing Quantum States: The Dawn of Electron-Hole Crystals in Mott Insulators

In the complex world of condensed matter physics, the emergence of electron-hole crystals represents a…

2 days ago

This website uses cookies.