Categories: Physics

Advancing Quantum Computing Through Chiral Interface States

A recent breakthrough by an international research team led by Lawrence Berkeley National Laboratory has opened up new possibilities for advancing quantum computing and energy-efficient electronics. The researchers have successfully visualized and demonstrated electrical control of a unique quantum phenomenon known as a chiral interface state. This conducting channel allows electrons to travel in only one direction, eliminating energy-wasting electrical resistance caused by backward scattering.

Visualizing the spatial characteristics of chiral interface states has been a significant challenge for researchers. Previous experiments have confirmed the existence of these states, but high-resolution imaging was lacking. However, the research team at Berkeley Lab and UC Berkeley has successfully captured atomic-resolution images that directly visualize a chiral interface state for the first time. This groundbreaking achievement provides valuable insights into the nature of these resistance-free conducting channels.

To prepare chiral interface states, the researchers utilized a device called twisted monolayer-bilayer graphene, consisting of two atomically thin layers of graphene rotated precisely relative to each other. This configuration creates a moiré superlattice that exhibits the quantum anomalous Hall effect, enabling the formation of chiral interface states. By using a scanning tunneling microscope (STM) in subsequent experiments, the researchers were able to detect different electronic states in the sample and visualize the wavefunction of the chiral interface state.

One of the key findings of the research is the ability to manipulate chiral interface states by modulating the voltage on a gate electrode underneath the graphene layers. The researchers demonstrated that a voltage pulse from the tip of an STM probe could “write,” erase, and rewrite chiral interface states in the sample, even changing the direction in which electrons flow. This level of control opens up exciting possibilities for building tunable networks of electron channels with potential applications in energy-efficient microelectronics and low-power magnetic memory devices.

The discovery of chiral interface states represents a significant step towards the development of quantum information systems and quantum computation. The researchers plan to further explore the potential of these states in studying exotic physics in related materials, such as anyons, a new type of quasiparticle that could revolutionize quantum computing. While there is still a long road ahead, this research paves the way for future advancements in the field of quantum computing and materials science.

adam1

Recent Posts

Revolutionizing Oxygen Evolution Reactions: The Promise of Doped Cobalt Catalysts

Recent advancements in electrocatalysis have opened up exciting avenues for energy conversion technologies. A multidisciplinary…

10 hours ago

The Cosmic Symphony: Unraveling the Birth and Death of Stars

Stars are the luminous beacons of the universe, embodying both beauty and complexity. Their life…

11 hours ago

The Future of Antarctica’s Ice Sheet: Warnings from Recent Research

As the climate crisis continues to escalate, a groundbreaking study led by a team of…

12 hours ago

Triumph of Innovation: Belgian Team Shines in South Africa’s Solar Car Challenge

In a remarkable testament to human ingenuity and the potential of renewable energy, a Belgian…

13 hours ago

The Expansion of Memory: Beyond the Brain

The human understanding of memory has long been confined to the realms of the brain,…

18 hours ago

The Enigmatic Dance of the Sun: Unraveling the Mysteries of Solar Behavior

The Sun has captivated humanity for millennia, serving not only as the source of light…

1 day ago

This website uses cookies.